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Abstract. One of the key experimental issues in high energy hadron physics is the extent to which data
from the diffractive interaction mechanism may be described by a factorized formula which is the product
of a universal term describing the probability of finding a Pomeron in a proton (loosely referred to as the
“Pomeron flux-factor”) and a term describing the Pomeron’s interaction with the other incident proton.
In the present paper, after demonstrating that existing data on diffractive γ∗p and p̄p interactions show
that the Pomeron flux-factor is not universal, we present the results of a new test of factorization in these
interactions which does not rely on universality of the flux-factor. The test is satisfied to within ∼ 20%
for 1 < Q2 < 6 GeV2 and β ≤ 0.2 in the γ∗p interactions, suggesting that the reasons for non-universality
of the flux-factor have a limited effect on the factorization itself. However, a clear breakdown of this test
is observed at larger Q2. Kharzeev and Levin suggest that this can be attributed to the onset of QCD
evolution effects in the Pomeron’s structure. The breakdown occurs in a Q2 region which agrees with their
estimates of a small Pomeron size.

1 Introduction

Studies of the inclusive inelastic production of beam-like
particles with momenta within a few percent of the asso-
ciated incident beam momentum, as in:

p̄ + pi → X + pf (1)

γ∗ + pi → X + pf (2)

have led to the development of a Regge phenomenology
[1,2] of these processes (see Fig. 1). The observed final–
state proton momentum reflects the exchanged Pomeron’s
momentum fraction in the proton1, ξ ≡ xP = 1 − xp, and
exchanged momentum transfer squared, t.

One of the relatively recent ideas [3] underlying the
phenomenology is that, although the Pomeron’s existence
in the proton is due to non-perturbative QCD, once the
Pomeron exists, perturbative QCD processes can occur
in the proton-Pomeron and γ∗-Pomeron interactions of
(1) and (2), respectively. [3] proposed the study of such
hard processes in (1) and (2) in order to determine the
Pomeron’s structure. Hard diffraction scattering was dis-
covered in p̄p interactions by the UA8 experiment [4] at
the Sp̄pS–Collider and in ep interactions by the ZEUS [5]
and H1 [6] experiments at HERA.

a Supported by U.S. National Science Foundation Grant
PHY-9986703

1 We use the symbol ξ for this variable in view of its simplic-
ity and its increasing use in the literature.

All available inclusive diffractive data from (1) and (2)
are well described [7–9] by expressing the observed single-
diffraction differential cross sections as products of fac-
tors describing the Pomeron flux in the proton, FP/p(t, ξ)
(hereafter referred to loosely but conveniently as Pomeron
emission), and Pomeron interaction, for example proton–
Pomeron or γ∗–Pomeron total cross sections, respectively.

d2σdiff
p̄p

dξdt
= F p̄p

P/p(t, ξ) · σtot
pP (s′) (3)

d2σdiff
γ∗p

dξdt
= F ep

P/p(t, ξ) · σtot
γ∗P(s′, Q2) (4)

-Q2 is the squared momentum transfer of the γ∗ in (2). s′ is
the squared invariant mass of the X systems in (1) and (2).
To good approximation2, s′ = ξs in (1) and s′ = ξW 2−Q2

in (2) (see Fig. 1).
There is, however, one complicating issue in the suc-

cessful description of the data by (3) and (4). The empiri-
cal Pomeron flux factors, F p̄p

P/p(t, ξ) and F ep
P/p(t, ξ), in the

two equations are found to be different. More specifically,
the effective Pomeron Regge trajectory in the common
factor, FP/p(t, ξ) ∼ ξ1−2α(t), required to fit the data is
different in (1) and (2). The ZEUS [8] and H1 [9] collab-
orations both demonstrated that the effective Pomeron
trajectory at low–|t| in (2) lies above the effective trajec-
tory which characterizes (1) (the evidence for this is shown

2 The second equation comes from s′ +Q2 − t = ξ(W 2 +Q2),
when |t| � s′ and ξ � 1.
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Fig. 1. Upper: The diffractive γ∗-proton process. The total
squared energy in the interaction is W 2. The 4-vector length
squared of the γ∗ is -Q2; Lower: The diffractive p̄p process.
In each process, the exchanged Pomeron has a squared 4-
momentum transfer, t, and momentum fraction, ξ ≡ xP =
1 − xp, of the incident proton

below in Sect. 3). This is a remarkable situation and tells
us that, although all existing data are well described by
(3) and (4), the Pomeron flux factor in the proton is not
universal.

This conclusion should not come as a surprise because,
for example, Kaidalov et al. [10] predicted that higher-
order non-perturbative Pomeron-exchange effects in pp
interactions lead to an effective Pomeron Regge trajec-
tory whose intercept at t = 0 decreases with increasing
energy. Moreover, as summarized in the following section,
we have reported [11] such effects3 by fitting (3) to all
available data on (1). Presumably, similar but weaker ef-
fects should also take place in ep colisions.

In the present paper, despite the non-universality of
the Pomeron flux factor in (1) and (2), we propose to test
the factorization represented in (3) and (4). We accom-
plish this by asking if the Pomeron-exchange components
of the extracted γ∗-Pomeron and p-Pomeron total cross
sections satisfy the relationship:

σtot
γ∗P

σtot
γ∗p

=
σtot

pP
σtot

pp

, (5)

where the denominators are the total γ∗p and pp cross sec-
tions, respectively, and where all four are evaluated at the
same cms interaction energy [14]. Equation (5) is obtained
from the optical theorem and the ratios of the forward
elastic amplitudes shown in Fig. 2.

However, (5) cannot be used directly. In extracting the
γ∗-Pomeron and p-Pomeron cross sections from the data
using (3) and (4), in each case only the product of a flux
factor normalization constant, K, and the cross section is
experimentally accessible. However, since FP/p(t, ξ) is not
universal, K may also not be universal. Thus, we introduce
the notation, Kep and Kpp for the two cases, respectively,

3 Only below s ∼ 550 GeV2 is the effective Pomeron trajec-
tory equal to the trajectory which describes the s-dependence
of the pp and pp̄ total cross sections [12,13].

σ IPγ *

σγ p*

σpIP

σpp

Fig. 2. Ratios of the γ∗ and hadronic forward elastic am-
plitudes referred to in the text. In all cases, the dashed lines
are Pomerons, the solid lines are protons and the curved lines
are γ∗s. On both left and right sides, the upper vertices can-
cel, showing that each is the ratio of Pomeron-Pomeron to
Pomeron-proton vertices. Hence, the left and right sides should
be equal

and the test of (5) is actually a test of:

Kep σtot
γ∗P

σtot
γ∗p

=
Kpp σtot

pP
σtot

pp

, (6)

If (6) is found to agree with data, as seems to be the
case (see Sects. 4 and 5), the simplest explanation is that
Kep ≈ Kpp and the extracted cross sections obey (5).

In Sect. 2 we review the existing phenomenological
analyses of (1) in terms of (3) and extract the right-hand
side of (6). In Sect. 3 the HERA diffractive data on (2) is
reanalyzed and the left-hand side of (6) is extracted from
the data. In Sect. 4, the factorization test is carried out
using (6). Our conclusions are given in Sect. 5.

2 Review of diffractive p̄p
and pp data analysis

The UA8 collaboration [7] fit (3) to the joint ξ-t
distributions of the available data on (1) at the Sp̄pS
(
√

s = 630 GeV and 1.0 < |t| < 2.0 GeV2) and the cor-
responding pp data at the ISR [15] (

√
s = 23.5, 30.5 GeV

and |t| < 2.0 GeV2), all with 0.03 < ξ < 0.09. They ob-
tained parametrizations of FP/p(t, ξ) and σtot

pP which em-
body some features not previously known:

FP/p(t, ξ) = Kpp · |F1(t)|2 · e(1.1±0.2)t · ξ1−2α(t) (7)

α(t) = 1 + ε + α′t + α′′t2

= 1.10 + 0.25t + (0.079 ± 0.012)t2 (8)

Kpp σtot
pP (s′) = (0.72 ± 0.10) (9)

·[(s′)0.10 + (4.0 ± 0.6)(s′)−0.32] mb GeV−2.

With |F1(t)|2 in (7) set equal to the Donnachie-Landshoff
[16] form factor4, the additional exponential factor is re-
quired.

4 F1(t) =
4m2

p−2.8t

4m2
p−t

· 1
(1−t/0.71)2
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The fits show that the effective Pomeron Regge tra-
jectory flattens in the domain, 1.0 < |t| < 2.0 GeV2, as
described by by the quadratic term in (8), when ε and α′
are fixed at 0.10 and 0.25 GeV−2, respectively. In (9), with
the exponents5 of s′ = ξs fixed at 0.10 and -0.32, respec-
tively, Kppσ

tot
pP (s′) requires the presence of both Pomeron–

and Reggeon-exchange terms, as shown. [7] confirms the
flattening of the effective trajectory at larger |t| values, as
well as the presence of the Reggeon-exchange term in (9),
by fitting the observed ξ–dependences at fixed t values
when6 ξ < 0.03. In the fits, the experimental resolution
and geometrical acceptance are taken into account.

A description of the phenomenology of (1) is incom-
plete without inclusion of the explicit effects of multi–
Pomeron-exchange. It has been widely known for some
time that the observed s–dependence of the total single–
diffractive cross section, σtot diff

p̄p , is not described by (3)
(integrated over t and ξ < 0.05) with a fixed Pomeron
Regge trajectory. Such a calculated σtot diff

p̄p rises rapidly
with energy and soon violates unitarity, while the observed
σtot diff

p̄p tends to level off or plateau at high energy [17,
18]. Since there is no built-in mechanism in the single-
Pomeron-exchange process of Fig. 1 to account for the
plateauing of σtot diff

p̄p , there have been continuing theo-
retical efforts to satisfy s–channel unitarity [19]; this ef-
fect is attributed to multiple–Pomeron-exchange and is
referred to variously in the literature as damping, screen-
ing, shadowing or absorption. Kaidalov et al. [10] showed
that multi–Pomeron-exchange diagrams lead to an effec-
tive Pomeron trajectory whose t = 0 intercept decreases
with increasing energy.

In order to assess these effects quantitatively, [11] per-
formed fits of (3) integrated over ξ < 0.05 to the dσ/dt of
all available ISR [20] and Sp̄pS [7,21] data. In fitting to the
complete set of ISR dσ/dt data over the energy range, s =
549 to 3840 GeV2, the only free parameters in (7), (8) and
(9) were those in the effective Pomeron trajectory, each of
which was assumed to have a simple s–dependence. The
fit results from [11] are7:

ε(s) = (0.096 ± 0.004) − (0.019 ± 0.005) · log(s/549).
α′(s) = (0.215 ± 0.011) − (0.031 ± 0.012) · log(s/549).
α′′(s) = (0.064 ± 0.006) − (0.010 ± 0.006) · log(s/549).

At the lowest ISR energy, s = 549 GeV2, ε = 0.096, α′ =
0.215 GeV−2 and α′′ = 0.064 GeV−4, while each of these is
seen to decrease with increasing energy. This is consistent
with fixing ε = 0.10 and α′ = 0.25 in the fits of [7], since
the only low–|t| data in those fits were at the lowest ISR
energies.

[11] finds that the effective Pomeron trajectory con-
tinues to decrease at higher energy. At the Sp̄pS, (

√
s =

5 In this formula and others like it, “s′” stands for “s′/s0”,
where s0 = 1 GeV2.

6 The sensitivity of fitting at small ξ comes from the fact
that, at small momentum transfer, the rapid increase of
ξ1−2α(0) ∼ 1/ξ1+2ε dominates the relatively weak dependence
of σtot

pP on ξ (via s′ = ξs).
7 The logarithms are to base 10.

630 GeV), the effective trajectory is:

α(t) = 1 + ε + α′t + α′′t2

= 1.035 + 0.165t + 0.059t2

[11] also shows that this α(t) form is consistent with the
published function [22] that is said to describe the CDF
data on (1) at the Tevatron.

For completeness, we note that the fits of [7] are in
kinematic regions where multi-Pomeron-exchange effects
in (1) seem to be smallest. In [11,18] it is shown that the
effective α(t) is relatively independent of s at the low end
of the ISR energy range and that there is no evidence for s–
dependence of the effective α(t) in the |t|–range, 1-2 GeV2

(its average value is 0.92 ± 0.03.). Thus, multi–Pomeron-
exchange effects appear to be mainly in the low–ξ, low–|t|
region [11,18], where most of the cross section is.

To prepare for the factorization test of (6), we need
to evaluate its right–hand–side. Its numerator is given by
(9), while its denominator is the pp total cross section,
which we take from the fits of [12,13]:

σtot
pp = 18 s0.10 − 27 s−0.50 + 55 s−0.32 mb. (10)

Since we are interested only in the Pomeron exchange
terms in (9) and (10), we drop the Reggeon-exchange
terms in both numerator and denominator. The right-
hand-side of (6) is then given by:

Kpp σtot
pP

σtot
pp

= 0.041 ± 0.007 GeV−2. (11)

3 Analysis of diffractive γ∗p data

In order to carry out the factorization tests, we first re-
analyze HERA ep diffractive data samples. The diffractive
structure function, ξF

D(3)
2 , for the ZEUS 1994 data [8] is

displayed in Fig. 3 and for the H1 1994 data [9] in Fig. 4.
The errors shown are obtained by summing the squared
statistical and systematic errors, respectively. In both ex-
periments, the recoil proton was not detected and the data
are therefore integrated over t. This also means that the
proton recoil system includes a low-mass excitation com-
ponent, which was measured at the CERN ISR [23] to be
(12.0 ± 2.5)% of the recoil system. This leads to a small
systematic upward shift in the F

D(3)
2 points, which is cor-

rected for in our final Fig. 7.
Following standard usage [24,8,9], the diffractive

structure function, F
D(3)
2 , is related to the diffractive γ∗–

proton differential cross section by8:

dσdiff
γ∗p

dξ
=

4π2α

Q2 · F
D(3)
2 (β, Q2, ξ) (12)

where, as noted earlier, the symbol, ξ ≡ xP, is used.

8 Eq. (12) is obtained from Eq. (8) of [8].
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Fig. 3. The ZEUS 1994 data [8]: ξF
D(3)
2 , vs. ξ (ξ ≡ xP) for

12 sets of (MX , Q2) values. At fixed MX and Q2, ξ and W 2

are uniquely related (ξ = (M2
X + Q2)/W 2). Thus, each set of

points displays the W 2 dependence of (2) at fixed MX and Q2.
The curves are the results of fitting (14) to the points shown,
as discussed in the text.

As in [3], F
D(3)
2 is written in factorized form, as the

product of a Pomeron flux factor (in this case, integrated
over t) and a Pomeron structure function, F

D(2)
2 :

F
D(3)
2 (β, Q2, ξ) =

∫
F ep

P/p(t, ξ)dt · F
D(2)
2 (β, Q2) (13)

≈ Kep

ξ1+2ε · (3.9 − 2α′ ln ξ)
· F

D(2)
2 (β, Q2).

or:

ξF
D(3)
2 (β, Q2, ξ) =

Kep F
D(2)
2 (β, Q2)

ξ2ε · (3.9 − 2α′ ln ξ)
. (14)

This approximate form of the flux factor integrated over t
arises from assuming e3.9tξ1−2α(t) for the functional form
of FP/p(t, ξ). 3.9 is the value which makes the integral
equal to that of the |t|–integral of the full flux factor in
(7) when α′ = 0.25 is used9.

Figure 3 shows the fits of (14) to the ZEUS data. The
free parameters are ε and an independent KF

D(2)
2 at each

of the twelve Q2 and MX combinations (α′ is fixed at
+0.25 GeV−2). These fits, and those made to the H1 data

9 This constant decreases to 3.7 and 3.5, for α′ = 0.15 and
0.05, respectively.
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Fig. 4. The H1 1994 data [9]: ξF
D(3)
2 , vs. ξ (ξ ≡ xP) in bins of

β and Q2. At each Q2, s′ = Q2 · (1 − β)/β. The curves are the
results of fitting (14) to the points with ξ < 10−2, as discussed
in the text

in Fig. 4, confirm factorization of Pomeron production and
interaction in the diffractive γ∗p interactions. In the do-
main, ξ < 0.01, where Reggeon exchange can be ignored at
all β, all the observed dependence on ξ is described by the
flux factor in (14). Although this factorization has been
known for some time from the H1 and ZEUS experiments,
it is perhaps not widely recognized how remarkable it is.

From the fits to the ZEUS data, Fig. 5 shows the re-
sults when we fix α′ at the series of four values shown
and determine ε and the twelve normalization constants
in Fig. 3. Figure 5 shows a 1σ error “band” of allowed α′
and ε values. All points along the valley of the contour
are equally acceptable as solutions and there is insignifi-
cant discrimination between them with the present data.
Although we assume α′ = +0.25 for the factorization anal-
ysis in this paper, we note that if the true effective α′ were
as small as +0.15, the final ratios used in the factorization
analysis only change by about 10% and do not effect our
conclusions.

We note in Fig. 5 that the band of allowed ε and α′
values for the γ∗–p interactions is seen to be inconsistent
with the conventional hadronic “soft-Pomeron” effective
Regge trajectory parameters [12,13,16], ε = 0.10 and α′
= +0.25. This had been noted earlier by both ZEUS [8]
and H1 [9], but only for the assumed value, α′ = +0.25.
We note here that the disagreement holds no matter what
value of α′ is assumed.
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Fig. 5. Fitted ε vs. fixed α′ from fits to the ZEUS 1994 data
shown in Fig. 3. The solid circles are from fits to all four Q2

ZEUS data sets; the solid squares are from fits to only the
two lowest Q2 data sets. The shaded band represents the ±σ
fit contour in the first set. The open circle shows the “soft”
Pomeron trajectory parameters, obtained from fitting the s–
dependence of total pp and p̄p cross sections

Figure 6 shows the fitted values of ε vs. Q2 for fixed α′
= +0.25. The ZEUS points correspond to simultaneous fits
to the three distributions at each Q2 shown in Fig. 3. The
H1 points are from combined fits made to the distributions
with ξ < 10−2, at each two neighboring Q2 values (4.5 and
7.5, 9 and 12, etc.) shown in Fig. 4. There is a suggestion
that ε depends on Q2.

4 Factorization test

To express the numerator on the left-hand-side of (6)
in terms of the measured F

D(2)
2 , a comparison of (12) and

(13) with (4) yields:

Kep σtot
γ∗P(s′, Q2) =

4π2α

Q2 · Kep F
D(2)
2 (β, Q2) (15)

where:

s′ = Q2(1 − β)/β (16)

The denominator on the left-hand-side of (6), σtot
γ∗p, is

approximately given in terms of the F2 structure function
by:

σtot
γ∗p(W

2, Q2) =
4π2α

Q2 · F2(x, Q2) (17)

where, because both σtot
γ∗P and σtot

γ∗p are evaluated at
the same center-of-mass energy [14], W 2 = s′ and x =

0

0.1

0.2

0.3

0.4

0 20 40 60 80

α´ = 0.25 GeV-2

H1

ZEUS

Q2
(Gev-2)

ε

Fig. 6. Fitted values of ε vs. Q2 with α′ fixed at 0.25 GeV−2,
as explained in the text. The solid and dashed curves are, re-
spectively, linear and quadratic fits to the points shown

Q2/(W 2 + Q2 − m2
p). Our desired ratio is:

Ratio ≡ Kep σtot
γ∗P

σtot
γ∗p

(18)

Figure 7 shows the Ratio defined in (18) evaluated vs.
Q2 for three different H1 data samples at β = 0.04, 0.10,
0.20 and 0.40. For all points, the numerator is obtained
from (15) and the denominator, σtot

γ∗p, was calculated using
the parameterization of Abramowicz and Levy [25].

The solid-square points in Fig. 7 with 4.5 < Q2 <
28 GeV2 are calculated using the 1994 H1 data [9]. We
see in the figure that these points are in reasonable agree-
ment with the factorization prediction in (11) at the lower
end of their Q2 range (4.5 and 7.5 GeV2) and β < 0.4,
while for Q2 larger than 6 or 7 GeV2, there is a clear di-
vergence from agreement with the prediction. The points
plotted in Fig. 7 with solid triangles at lower Q2 values,
0.8 < Q2 < 5 GeV2, are preliminary results from the
1995 H1 data [26]. Those plotted with open circles in the
range, 2.5 < Q2 < 12 GeV2, are preliminary results from
the 1999 H1 data [27]. The points are seen to be in rea-
sonable agreement in the Q2 domains where they overlap.
Equation (6), seems to be satisfied to within 20% below
Q2 ∼ 6 or 7 GeV2 and β < 0.4.

As discussed in the following section, the breakdown
of Factorization for Q2 above about 6 GeV2 can be at-
tributed to the onset of perturbative QCD efects on a
small Pomeron. This is agreement with the magnitude
calculated by Kharzeev and Levin [28]. However, several
caveats concerning the results in Fig. 7 should be noted.

1. The factorization prediction of (6) is only valid for
its Pomeron-exchange components. Although we have
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Fig. 7. Ratio defined in (18) vs. Q2 for β = 0.04,
0.10, 0.20 and 0.4. The solid-square points are calcu-
lated using the 1994 H1 data [9] and are the ratios of
Kep σtot

γ∗P to σtot
γ∗p as explained in the text. The solid

triangles and open circle points use the preliminary
lower–Q2 1995 [26] and 1999 [27] H1 data as measured
from figures in their conference papers. The shaded
band is the ratio of Kpp σtot

pP to σtot
pp ; see (11). In the

extraction of the Kepσtot
γ∗P values, ε = 0.15 and α′

= 0.25 are used. All points are systematically shifted
downward by 12% to account for excitation of the un-
observed proton, as discussed in Sect. 3

these for the right-hand-side of (6), as shown in (11)
and the bands in Fig. 7, we are presently unable to
know the Pomeron-exchange components in the left-
hand-side of (6), or the data points in Fig. 7. Thus,
agreement between bands and data points in Fig. 7
implies that Pomeron-exchange is the same fraction of
both numerator and denominator of Ratio.

2. In calculating the points in Fig. 7, ε = 0.15 and α′ =
0.25 are assumed. It is relevant to point out that the
character of Fig. 7 is not very sensitive to uncertain-
ties in these parameters. For example, as noted in the
previous section, if α′ = +0.15 is used to calculate the
ratios in the figure, their values change by only ∼ 10%
and the conclusions do not change.

3. We pointed out above that the K factor in FP/p(t, ξ)
might be different in (1) and (2) and we therefore la-
beled them differently. However, the approximate fac-
torization agreement that we find at the lower Q2 val-
ues implies that the two K values are probably not
very different.

5 Conclusions

We have summarized the phenomenology of inclusive
single diffraction in pp (p̄p) interactions in which all avail-
able data are well described by a product of two functions
which describe, respectively, the Pomeron flux in a pro-
ton and the Pomeron-proton cross section. The Pomeron
flux factor has the characteristic Regge form, except that
the empirical Pomeron Regge trajectory is an effective
one whose t = 0 intercept and slope decrease with in-
creasing energy. Following the arguments of Kaidalov et
al. [10], this presumably reflects multi–Pomeron-exchange

processes which grow with energy, although it seems sur-
prising that the factorized formula continues to describe
the data as well as it does under these circumstances.

The data on diffractive γ∗p interactions in HERA
ep collisions are also well described by a product of a
Pomeron flux factor and a cross section factor. However,
the effective Pomeron trajectory is distinctly different
from what is found in the corresponding hadronic interac-
tions referred to in the previous paragraph. A possible in-
terpretation for this fact is that multi–Pomeron-exchange
effects are different in pp and ep collisions.

From fits to the two diffractive data sets, we have ex-
tracted values for the γ∗–Pomeron and p–Pomeron total
cross sections (in each case multiplied by the normaliza-
tion constant of the respective Pomeron flux factor). We
then combined these cross sections with the known total
γ∗p and pp total cross sections to test a simple factor-
ization relation between their Pomeron-exchange compo-
nents due to the optical theorem.

The factorization test is observed to be reasonably well
satisfied, to within about 20%, in the range, 1 < Q2 <
6 GeV2. However, at higher Q2 values, a clear breakdown
in the factorization test is observed.

In view of the pronounced and different Pomeron tra-
jectory intercepts which are observed in the two classes
of reactions, the first of these two observations is very
surprising. It seems to be telling us that the dominant
multi–Pomeron-exchange (or damping) effects are of such
a nature that factorization of the Pomeron’s flux factor
and its interaction is not very much disturbed.

According to Kharzeev and Levin [28], our second ob-
servation concerning the breakdown of factorization ob-
served at larger Q2 can be understood in terms of the
onset of QCD evolution effects in the Pomeron structure
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and a small Pomeron size (see also [29]). Arguing that
the properties of the soft Pomeron are linked to the scale
anomaly of QCD, Kharzeev and Levin calculate that the
scale, M2

0 ∼ 4 ÷ 6 GeV2 is the largest non–perturbative
scale in QCD. This corresponds to Q2 ∼ 1/R2

P ∼ M2
0 ,

where RP is a typical size of the Pomeron.
The Q2 value at which our observed breakdown occurs

gives a measure of the size of the Pomeron: R2
P ∼ 1/Q2 =

(0.39 GeV2 mb) / (6 GeV2) = 0.065 mb. The area, πR2
P =

0.20 mb, agrees well with the recent UA8 measurement
[30] of the Pomeron–Pomeron total cross section, σtot

PP =
0.2 mb above a center of mass energy of about 10 GeV.
In this connection, it is also interesting to note that UA8
also obtained a statistically modest, but significant, test
of factorization in double-Pomeron-exchange:

p̄ p → p̄ X p (19)

using the relation:

K2 σtot
PP

K σtot
pP

=
K σtot

pP
σtot

pp

. (20)

As pointed out in Sect. 4, there are limitations to
the factorization analysis presented in this paper. These
can be addressed by obtaining larger and improved event
samples. For example, in the case of (2), more detailed
t-dependent measurements will allow an unambiguous de-
termination of the effective Pomeron trajectory, espec-
tially as a function of Q2. The left–hand side in (6)
should be determined for the Pomeron-exchange compo-
nent alone. In the case of (1), there is a great need for
new and more complete data samples over a wider range
of t and s. This will be necessary in order to understand
how the validity of our factorization test depends on the
degree of damping in the reactions. This may be a very
important issue, which we were not able to address in this
paper because of a lack of the necessary data. To pursue
this topic in the future, it will be necessary to have de-
tailed studies of (1) at the Tevatron and a possible new
experiment at RHIC, which can cover the energy range
between ISR and Sp̄pS.

In summary, we conclude that, despite the non-
universality of the Pomeron flux factor in (1) and (2), the
differential cross sections for these reactions can, to good
approximation, still be written as a product of Pomeron
formation and interaction factors. In other words, there is
no evidence for a breakdown of the factorization embodied
in (3) and (4) for Q2 < 6 GeV2 in (2). The apparent fac-
torization breakdowns reported in [31–33] are likely due
to the different effective Pomeron trajectories in ep and
pp interactions.
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